The sensitive to freezing3 mutation of Arabidopsis thaliana is a cold-sensitive allele of homomeric acetyl-CoA carboxylase that results in cold-induced cuticle deficiencies

34Citations
Citations of this article
29Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The sfr3 mutation causes freezing sensitivity in Arabidopsis thaliana. Mapping, sequencing, and transgenic complementation showed sfr3 to be a missense mutation in ACC1, an essential gene encoding homomeric (multifunctional) acetyl-CoA carboxylase. Cuticle permeability was compromised in the sfr3 mutant when plants were grown in the cold but not in the warm. Wax deposition on the inflorescence stem of cold-grown sfr3 plants was inhibited and the long-chain components of their leaf cuticular wax were reduced compared with wild-type plants. Thus, freezing sensitivity of sfr3 appears, from these results, to be due to cuticular deficiencies that develop during cold acclimation. These observations demonstrated the essential role of the cuticle in tolerance to freezing and drought. © [2012] The Author.

Cite

CITATION STYLE

APA

Amid, A., Lytovchenko, A., Fernie, A. R., Warren, G., & Thorlby, G. J. (2012). The sensitive to freezing3 mutation of Arabidopsis thaliana is a cold-sensitive allele of homomeric acetyl-CoA carboxylase that results in cold-induced cuticle deficiencies. Journal of Experimental Botany, 63(14), 5289–5299. https://doi.org/10.1093/jxb/ers191

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free