Classification and Quality Analysis of Food Grains

  • R. Siddagangappa M
  • Kulkarni A
N/ACitations
Citations of this article
32Readers
Mendeley users who have this article in their library.

Abstract

In the present grain-handling scenario, grain type and quality are identified manually by visual inspection which is tedious and not accurate. There is need for the growth of fast, accurate and objective system for quality determination of food grains. An automated system is introduced which is used for grain type identification and analysis of rice quality (i.e. Basmati, Boiled and Delhi) and grade (i.e. grade 1, grade 2, and grade3) using Probabilistic Neural Network. This paper proposes a model that uses color and geometrical features as attributes for classification. The grading of rice sample is done according to the size of the grain kernel and presence of impurities. A good classification accuracy is achieved using only 6 features, i.e. mean of RGB colors and 3 geometrical features. The total success rate of type identification is 98% and total success rate of quality analysis and grading of rice is 90% and 92% respectively.

Cite

CITATION STYLE

APA

R. Siddagangappa, M., & Kulkarni, Asso. Prof. A. H. (2014). Classification and Quality Analysis of Food Grains. IOSR Journal of Computer Engineering, 16(4), 01–10. https://doi.org/10.9790/0661-16430110

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free