Mass spectrometry: From plasma proteins to mitochondrial membranes

49Citations
Citations of this article
107Readers
Mendeley users who have this article in their library.

Abstract

In this Inaugural Article, I trace some key steps that have enabled the development of mass spectrometry for the study of intact protein complexes from a variety of cellular environments. Beginning with the preservation of the first soluble complexes from plasma, I describe our early experiments that capitalize on the heterogeneity of subunit composition during assembly and exchange reactions. During these investigations, we observed many assemblies and intermediates with different subunit stoichiometries, and were keen to ascertain whether or not their overall topology was preserved in the mass spectrometer. Adapting ion mobility and soft-landing methodologies, we showed how ring-shaped complexes could survive the phase transition. The next logical progression from soluble complexes was to membrane protein assemblies but this was not straightforward. We encountered many pitfalls along the way, largely due to the use of detergent micelles to protect and stabilize complexes. Further obstacles presented when we attempted to distinguish lipids that copurify from those that are important for function. Developing new experimental protocols, we have subsequently defined lipids that change protein conformation, mediate oligomeric states, and facilitate downstream coupling of G protein-coupled receptors. Very recently, using a radical method—ejecting protein complexes directly from native membranes into mass spectrometers—we provided insights into associations within membranes and mitochondria. Together, these developments suggest the beginnings of mass spectrometry meeting with cell biology.

Cite

CITATION STYLE

APA

Robinson, C. V. (2019). Mass spectrometry: From plasma proteins to mitochondrial membranes. Proceedings of the National Academy of Sciences of the United States of America, 116(8), 2814–2820. https://doi.org/10.1073/pnas.1820450116

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free