Geochronological (U–Pb, U–Th–total Pb, Sm–Nd) and geochemical (REE, 87Sr/86Sr, δ18O, δ13C) tracing of intraplate tectonism and associated fluid flow in the Warburton Basin, Australia

6Citations
Citations of this article
18Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The Warburton Basin of central Australia has experienced a complex tectonic and fluid-flow history, resulting in the formation of various authigenic minerals. Geochemical and geochronological analyses were undertaken on vein carbonates from core samples of clastic sediments. Results were then integrated with zircon U–Pb dating and uraninite U–Th–total Pb dating from the underlying granite. Stable and radiogenic isotopes (δ18O, Sr and εNd), as well as trace element data of carbonate veins indicate that >200 °C basinal fluids of evolved meteoric origin circulated through the Warburton Basin. Almost coincidental ages of these carbonates (Sm–Nd; 432 ± 12 Ma) with primary zircon (421 ± 3.8 Ma) and uraninite (407 ± 16 Ma) ages from the granitic intrusion point towards a substantial period of active tectonism and an elevated thermal regime during the mid Silurian. We hypothesise that such a thermal regime may have resulted from extensional tectonism and concomitant magmatic activity following regional orogenesis. This study shows that the combined application of geochemical and geochronological analyses of both primary and secondary species may constrain the timing of tectonomagmatic events and associated fluid flow in intraplate sedimentary basins. Furthermore, this work suggests that the Sm–Nd-isotopic system is surprisingly robust and can record geologically meaningful age data from hydrothermal mineral species.

Cite

CITATION STYLE

APA

Middleton, A. W., Uysal, I. T., Golding, S. D., Förster, H. J., Allen, C. M., Feng, Y., … van Zyl, J. (2014). Geochronological (U–Pb, U–Th–total Pb, Sm–Nd) and geochemical (REE, 87Sr/86Sr, δ18O, δ13C) tracing of intraplate tectonism and associated fluid flow in the Warburton Basin, Australia. Contributions to Mineralogy and Petrology, 168(3), 1–22. https://doi.org/10.1007/s00410-014-1058-7

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free