Genetic enhancement of learning and memory in mice

N/ACitations
Citations of this article
1.0kReaders
Mendeley users who have this article in their library.
Get full text

Abstract

Hebb's rule (1949) states that learning and memory are based on modifications of synaptic strength among neurons that are simultaneously active. This implies that enhanced synaptic coincidence detection would lead to better learning and memory. If the NMDA (N-methyl-D-aspartate) receptor, a synaptic coincidence detector, acts as a graded switch for memory formation, enhanced signal detection by NMDA receptors should enhance learning and memory. Here we show that overexpression of NMDA receptor 2B (NR2B) in the forebrains of transgenic mice leads to enhanced activation of NMDA receptors, facilitating synaptic potentiation in response to stimulation at 10-100 Hz. These mice exhibit superior ability in learning and memory in various behavioural tasks, showing that NR2B is critical in gating the age-dependent threshold for plasticity and memory formation. NMDA-receptor-dependent modifications of synaptic efficacy, therefore, represent a unifying mechanism for associative learning and memory. Our results suggest that genetic enhancement of mental and cognitive attributes such as intelligence and memory in mammals is feasible.

Cite

CITATION STYLE

APA

Tang, Y. P., Shimizu, E., Dube, G. R., Rampon, C., Kerchner, G. A., Zhuo, M., … Tsien, J. Z. (1999). Genetic enhancement of learning and memory in mice. Nature, 401(6748), 63–69. https://doi.org/10.1038/43432

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free