The protective clothing packages, which protect the human body against hot factors in a foundry are in continuous development to increase their resistance and comfort of use. The problem of heat transfer through textiles is the active field of research and reliable numerical modeling of this process can be helpful to design high-quality protective products. Therefore, the numerical model of heat transfer through the package based on the aluminized basalt fabric was developed. The macroscopic geometry of weft and warp threads was reproduced in agreement with samples of plain weave basalt fabric. Mapping the stochastically distributed individual monofilaments in basalt threads, as well as modeling the heat transfer between them, was impossible at the microscopic level. Therefore, the weft and warp threads were modeled as a porous material with a homogeneous distribution of basalt and air in their structure. Data from measurements of the bare and aluminized basalt fabrics by the Alambeta device were used to determine the model parameters. The model was used to simulate the heat transfer through the protective package composed of the aluminized basalt fabric, wool clothing, and cotton underwear. A good agreement of model results was found for measurement results in such a package. The presented procedure allowed for the determination of the main thermal properties of tested basalt fabrics.
CITATION STYLE
Gilewicz, P., Obidowski, D., Sobczak, K., Frydrych, I., & Cichocka, A. (2023). Analysis of Heat Transfer through a Protective Clothing Package. Autex Research Journal, 23(1), 29–38. https://doi.org/10.2478/aut-2021-0044
Mendeley helps you to discover research relevant for your work.