Here we show how a simple inorganic salt can spontaneously form autocatalytic sets of replicating inorganic molecules that work via molecular recognition based on the {PMo12} ≡ [PMo12O40]3- Keggin ion, and {Mo36} ≡ [H3Mo57M6(NO)6O183(H2O)18]22- cluster. These small clusters are able to catalyze their own formation via an autocatalytic network, which subsequently template the assembly of gigantic molybdenum-blue wheel {Mo154} ≡ [Mo154O462H14(H2O)70]14-, {Mo132} ≡ [MoVI72MoV60O372(CH3COO)30(H2O)72]42- ball-shaped species containing 154 and 132 molybdenum atoms, and a {PMo12}⊂{Mo124Ce4} ≡ [H16MoVI100MoV24Ce4O376(H2O)56 (PMoVI10MoV2O40)(C6H12N2O4S2)4]5-nanostructure. Kinetic investigations revealed key traits of autocatalytic systems including molecular recognition and kinetic saturation. A stochastic model confirms the presence of an autocatalytic network involving molecular recognition and assembly processes, where the larger clusters are the only products stabilized by the cycle, isolated due to a critical transition in the network.
CITATION STYLE
Miras, H. N., Mathis, C., Xuan, W., Long, D. L., Pow, R., & Cronin, L. (2020). Spontaneous formation of autocatalytic sets with self-replicating inorganic metal oxide clusters. Proceedings of the National Academy of Sciences of the United States of America, 117(20), 10699–10705. https://doi.org/10.1073/pnas.1921536117
Mendeley helps you to discover research relevant for your work.