Superconducting magnetic energy storage (SMES) systems, in which the proportional-integral (PI) method is usually used to control the SMESs, have been used in microgrids for improving the control performance. However, the robustness of PI-based SMES controllers may be unsatisfactory due to the high nonlinearity and coupling of the SMES system. In this study, the energy shaping passivity (ESP)-based control strategy, which is a novel nonlinear control based on the methodology of interconnection and damping assignment (IDA), is proposed for robustness improvement of SMES systems. A step-by-step design of the ESP-based method considering the robustness of SMES systems is presented. A comparative analysis of the performance between ESP-based and PI control strategies is shown. Simulation and experimental results prove that the ESP-based strategy achieves the stronger robustness toward the system parameter uncertainties than the conventional PI control. Besides, the use of ESP-based control method can reduce the eddy current losses of a SMES system due to the significant reduction of 2nd and 3rd harmonics of superconducting coil DC current.
CITATION STYLE
Hou, R., Song, H., Nguyen, T. T., Qu, Y., & Kim, H. M. (2017). Robustness improvement of superconducting magnetic energy storage system in microgrids using an energy shaping passivity-based control strategy. Energies, 10(5). https://doi.org/10.3390/en10050671
Mendeley helps you to discover research relevant for your work.