Background: Recently, mesenchymal stem cells (MSCs) have been shown to have immunomodulatory properties which hold promise for their clinical use to treat inflammatory conditions. Relative to bone marrow-derived MSCs (BMSCs), which are typically isolated from the iliac crest, we have recently demonstrated that MSCs can be predictably isolated from the alveolar bone (aBMSCs) by less invasive means. As such, the aim of this study was to characterize the immunomodulatory properties of aBMSCs relative to BMSCs. Methods: aBMSCs isolated from the human alveolar bone and BMSCs isolated from the human bone marrow of the iliac crest were cultured in the same conditions. Cytokine arrays and enzyme-linked immunosorbent assays (ELISA) of a conditioned medium were used to evaluate differences in the secretion of cytokines. In different functional assays, aBMSCs and BMSCs were cocultured with different types of immune cells including THP-1 monocytes, macrophages, and peripheral blood mononuclear cells (PBMCs) to evaluate their effects on important immune cell functions including proliferation, differentiation, and activation. Results: The protein arrays identified interleukin (IL)-6 and monocyte chemoattractant protein (MCP)-1 to be the major cytokines secreted by aBMSCs and BMSCs. ELISA determined that aBMSCs secreted 268.64 ± 46.96 pg/mL of IL-6 and 196.14 ± 97.31 pg/mL of MCP-1 per microgram of DNA, while BMSCs secreted 774.86 ± 414.29 pg/mL of IL-6 and 856.37 ± 433.03 pg/mL of MCP-1 per microgram of DNA. The results of the coculture studies showed that aBMSCs exhibited immunosuppressive effects on monocyte activation and T cell activation and proliferation similar to BMSCs. Both aBMSCs and BMSCs drove macrophages into an anti-inflammatory phenotype with increased phagocytic ability. Taken together, these data suggest that aBMSCs have potent immunomodulatory properties comparable to those of BMSCs. Conclusions: The findings of this study have important implications for the development of immunomodulatory stem cell therapies aimed to treat inflammatory conditions using aBMSCs, a more feasible tissue source of MSCs.
CITATION STYLE
Cao, C., Tarlé, S., & Kaigler, D. (2020). Characterization of the immunomodulatory properties of alveolar bone-derived mesenchymal stem cells. Stem Cell Research and Therapy, 11(1). https://doi.org/10.1186/s13287-020-01605-x
Mendeley helps you to discover research relevant for your work.