Provision of microbiologically safe drinking water for people living in the rural areas of developing countries remains a major challenge to date. A simple gravity-driven membrane point of use system was developed based on woven fabric microfiltration (WFMF) membranes. The WFMF is a loose type of membrane (0.45 μm). However, complete disinfection is not achieved with the WFMF, hence it was incorporated with two disinfectants. This study aimed to combine the WFMF with two disinfectants (WaterGuard and bromochlor tablets) to bring the water to the accepted quality for drinking. Four different types of waterwere sourced, considering two factors: E. coli and turbidity content. The WFMF demonstrated excellent filtration performance by producing permeates with turbidity less than 1 NTU for feed turbidity ranging between 10 and 200 NTU. There was 95–99.8% E. coli removal for raw feeds with influent E. coli ranging between 500 and 44,500 CFU/100 mL. Total disinfectionwas achieved with both disinfectants; however, the effectiveness of the chemical disinfectants in E. coli removal was affected by the quality of water to be disinfected. The study showed that turbidity plays a major role in disinfection performances by increasing chlorine demand on water sources with high turbidity levels.
CITATION STYLE
Alfa, D., Rathilal, S., Pillay, V. L., Pikwa, K., & Chollom, M. N. (2016). Development and evaluation of a small scale water disinfection system. Journal of Water Sanitation and Hygiene for Development, 6(3), 389–400. https://doi.org/10.2166/washdev.2016.093
Mendeley helps you to discover research relevant for your work.