Earthquake source characterization by machine learning algorithms applied to acoustic signals

7Citations
Citations of this article
48Readers
Mendeley users who have this article in their library.

Abstract

Underwater seismic events generate acoustic radiation (such as acoustic-gravity waves), that carries information about the source and can travel long distances before dissipating. Effective early warning, emergency response, and information dissemination for earthquakes and tsunamis require a rapid characterisation of the fault properties: geometry and dynamics. In this work, we analysed hydrophone recordings of 201 earthquakes, located in the Pacific and the Indian Ocean, by employing acoustic signal processing and classification methods. The analysis allows identifying the type of earthquake (i.e. slip type, magnitude) and provides near real-time estimation of the effective properties of the fault dynamics and geometry. The results were compared against values reported by the Harvard Global Centroid Moment Tensor catalog (gCMT), revealing statistical significance between the extracted acoustic properties used to feed machine learning algorithms and the predicted slip and magnitude values.

Cite

CITATION STYLE

APA

Gomez, B., & Kadri, U. (2021). Earthquake source characterization by machine learning algorithms applied to acoustic signals. Scientific Reports, 11(1). https://doi.org/10.1038/s41598-021-02483-w

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free