A novel aquaporin 12-like protein from chilo suppressalis: Characterization and functional analysis

4Citations
Citations of this article
16Readers
Mendeley users who have this article in their library.

Abstract

Aquaporins (AQPs), which are members of the major intrinsic protein (MIP) family, play an important role in the transport of water and other small, uncharged solutes across membranes. In this study, we identified gene encoding two aquaporin 12-like (AQP12L) proteins, CsAqp12L_v1 and CsAqp12L_v2, from Chilo suppressalis, a serious rice pest in Asia. Phylogenetic analysis indicated that CsAQP12L_V1 and CsAQP12L_V2 were grouped in a well-supported cluster that included other members of Lepidoptera. The two proteins are almost identical, except that CsAQP12L_V1 lacks 34 amino acids that are present in CsAQP12L_V2 at site 217. The qRT-PCR indicated that both CsAqp12L and CsAqp12L_v2 were expressed in heads, epidermis, foregut, midgut, and hindguts, with the highest level of expression in hindguts, heads, and epidermis. Expression of CsAqp12L and CsAqp12L_v2 was detected in all life stages and both sexes and was highest in first instar larvae and lowest in eggs. Expression of CsAqp12L and CsAqp12L_v2 was not significantly altered by exposure to brief changes in temperature. There were no significant differences in the third instar larvae, male and female pupae, and female adults in response to adverse humidity. However, the mRNA level of CsAqp12L in the fifth instar larvae and CsAqp12L_ν2 in male adults was induced significantly by low humidity, respectively. Moreover, Xenopus oocytes injected with cRNAs of CsAQP12L_V1 and CsAQP12L_V2 showed no significant changes in permeability to water, glycerol, trehalose, or urea. The two CsAQP12L variants likely localize to an intracellular location in C. suppressalis and may respond to novel stimuli.

Cite

CITATION STYLE

APA

Lu, M. X., Song, J., Xu, J., Wang, G., Liu, Y., & Du, Y. Z. (2019). A novel aquaporin 12-like protein from chilo suppressalis: Characterization and functional analysis. Genes, 10(4). https://doi.org/10.3390/genes10040311

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free