Nutrient cycling potential within microbial communities on culturally important stoneworks

25Citations
Citations of this article
48Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Previous studies on microbes associated with deterioration of cultural heritage (CH) stoneworks have revealed a diverse microbiota adapted to stresses such as low nutrients, aridity and high salinity, temperatures and radiation. However, the function of these pioneer microbial communities is still unclear. This study examines bacterial and archaeal diversity in exfoliated and dark encrustation sandstone from Portchester Castle (UK) by 16S rRNA and functional gene analyses. Bacterial and archaeal communities from the exfoliated sites were distinctly different from the dark encrustation. Detected genera were linked to extreme environmental conditions, various potential functional roles and degradation abilities. From these data it was possible to reconstruct almost complete nitrogen and sulfur cycles, as well as autotrophic carbon fixation and mineral transformation processes. Analysis of RNA showed that many of the detected genera in these nutrient cycles were probably active in situ. Thus, CH stonework microbial communities are highly diverse and potentially self-sustaining ecosystems capable of cycling carbon, nitrogen and sulfur as well as the stone biodeterioration processes that lead to alterations such as exfoliation and corrosion. These results highlight the importance of diversity and internal recycling capacity in the development of microbial communities in harsh and low energy systems.

Cite

CITATION STYLE

APA

Zanardini, E., May, E., Purdy, K. J., & Murrell, J. C. (2019). Nutrient cycling potential within microbial communities on culturally important stoneworks. Environmental Microbiology Reports, 11(2), 147–154. https://doi.org/10.1111/1758-2229.12707

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free