Non-enzymatic glucose sensors have emerged as pivotal tools for monitoring blood glucose levels, offering advantages over traditional enzymatic methods in terms of sensitivity, selectivity, and cost-effectiveness. This study explores the utilization of a simple and low-cost method for preparation of copper oxide (CuO) nanostructures to look for the non-enzymatic glucose sensing. Morphological and structural analysis via Scanning Electron Microscopy and X-ray diffraction of synthesized CuO nanostructures revealed nearly same size, shape, and a pure monoclinic crystal structure. Fourier transform infrared spectroscopy further confirmed the monoclinic phase. More importantly, we employed CuO nanostructures-modified glassy carbon electrodes (GCE) to investigate the glucose sensing and sensing parameters. The electrodes exhibited comparable sensitivity, selectivity, and an extended dynamic range 0.4–0.6 V applied potentials with regard to earlier reports. Amperometric responses of lower concentration based synthesized CuO sample recorded at 0.5 V unveiled a low limit of detection of 5.9 μ M, a sensitivity of approximately 10.6 μ A/(mM·cm 2 ), and a rapid 2 s response time. Manipulating the CuO-nanostructures and integrating on the GCE can offer a promising opportunity for enhanced non-enzymatic glucose sensing with high sensitivity, selectivity, and broad dynamic range towards utility in real-time glucose monitoring, contributing to improved healthcare diagnostics and diabetes management.
CITATION STYLE
B., K. D., D., B., E. S. R., A. N., Praveen, P., Das, P., Tripathy, S. K., & Behera, B. C. (2023). Investigation of Glucose Sensing via Controlled Copper Concentration in CuO for Non-Enzymatic Glucose Biosensor. ECS Journal of Solid State Science and Technology, 12(11), 117004. https://doi.org/10.1149/2162-8777/ad0aad
Mendeley helps you to discover research relevant for your work.