Equilibrium structure and dynamics of the California current system

504Citations
Citations of this article
318Readers
Mendeley users who have this article in their library.
Get full text

Abstract

This paper addresses the structure and dynamical mechanisms of regional and mesoscale physical variability in the subtropical northeast Pacific Ocean using the Regional Oceanic Modeling System (ROMS). The model is configured with a U.S. West Coast domain that spans the California Current System (CCS) with a mesoscale horizontal resolution up to as fine as 3.5 km. Its mean-seasonal forcing is by momentum, heat, and water fluxes at the surface and adaptive nudging to gyre-scale fields at the open water boundaries. Its equilibrium solutions show realistic mean and seasonal states and vigorous mesoscale eddies, fronts, and filaments. The level of eddy kinetic energy (EKE) in the model is comparable to drifter and altimeter estimates in the solutions with sufficiently fine resolution. Because the model lacks nonseasonal transient forcing, the authors conclude that the dominant mesoscale variability in the CCS is intrinsic rather than transiently forced. The primary eddy generation mechanism is the baroclinic instability of upwelling, alongshore currents. There is progressive movement of mean-seasonal currents and eddy energy offshore and downward into the oceanic interior in an annually recurrent cycle. The associated offshore eddy heat fluxes provide the principal balance against nearshore cooling by mean Ekman transport and upwelling. The currents are highly nonuniform along the coast, with important influences by capes and ridges in both maintaining mean standing eddies and launching transient filaments and fronts.

Cite

CITATION STYLE

APA

Marchesiello, P., McWilliams, J. C., & Shchepetkin, A. (2003). Equilibrium structure and dynamics of the California current system. Journal of Physical Oceanography, 33(4), 753–783. https://doi.org/10.1175/1520-0485(2003)33<753:ESADOT>2.0.CO;2

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free