Co-cultivation in microfluidic droplets has emerged as a versatile tool for the study of natural and synthetic microbial communities. In particular, the identification and characterization of syntrophic interactions in these communities is attracting increasing interest due to their critical importance for the functioning of environmental and host-associated communities as well as new biotechnological applications. However, one critical parameter in droplet-enabled co-cultivation that has evaded appropriate evaluation is the droplet size. Given the same number of initial cells, a larger droplet size can increase the length scale secreted metabolites must diffuse as well as dilute the initial concentration of cells and exchanged metabolites, impacting the community dynamics. To evaluate the effect of droplet size on a spectrum of syntrophic interactions, we cultivated a synthetic model system consisting of two E. coli auxotrophs, whose interactions could be modulated through supplementation of related amino acids in the medium. Our results demonstrate that the droplet size impacts substantially numerous aspects of the growth of a cross-feeding bi-culture, particularly the growth capacity, maximum specific growth rate, and lag time, depending on the degree of the interaction. This work heavily suggests that one droplet size does not fit all types of interactions; this parameter should be carefully evaluated and chosen in experimental studies that aim to utilize droplet-enabled co-cultivation to characterize or elucidate microbial interactions.
CITATION STYLE
Tan, J. Y., Saleski, T. E., & Lin, X. N. (2022). The effect of droplet size on syntrophic dynamics in droplet-enabled microbial co-cultivation. PLoS ONE, 17(3 March). https://doi.org/10.1371/journal.pone.0266282
Mendeley helps you to discover research relevant for your work.