The interplay of GTP-binding protein AGB1 with ER stress sensors IRE1a and IRE1b modulates Arabidopsis unfolded protein response and bacterial immunity

7Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

In eukaryotic cells, the accumulation of unfolded or misfolded proteins in the endoplasmic reticulum (ER) results in ER stress that induces a cascade of reactions called the unfolded protein response (UPR). In Arabidopsis, the most conserved UPR sensor, Inositol-requiring enzyme 1 (IRE1), responds to both abiotic- and biotic-induced ER stress. Guanine nucleotide-binding proteins (G proteins) constitute another universal and conserved family of signal transducers that have been extensively investigated due to their ubiquitous presence and diverse nature of action. Arabidopsis GTP-binding protein β1 (AGB1) is the only G-protein β-subunit encoded by the Arabidopsis genome that is involved in numerous signaling pathways. Mounting evidence suggests the existence of a crosstalk between IRE1 and G protein signaling during ER stress. AGB1 has previously been shown to control a distinct UPR pathway independently of IRE1 when treated with an ER stress inducer tunicamycin. Our results obtained with combinatorial knockout mutants support the hypothesis that both IRE1 and AGB1 synergistically contribute to ER stress responses chemically induced by dithiothreitol (DTT) as well as to the immune responses against a phytopathogenic bacterium Pseudomonas syringae pv. tomato strain DC3000. Our study highlights the crosstalk between the plant UPR transducers under abiotic and biotic stress.

Cite

CITATION STYLE

APA

Afrin, T., Costello, C. N., Monella, A. N., Kørner, C. J., & Pajerowska-Mukhtar, K. M. (2022). The interplay of GTP-binding protein AGB1 with ER stress sensors IRE1a and IRE1b modulates Arabidopsis unfolded protein response and bacterial immunity. Plant Signaling and Behavior, 17(1). https://doi.org/10.1080/15592324.2021.2018857

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free