A critical assessment of topologically associating domain prediction tools

86Citations
Citations of this article
198Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Topologically associating domains (TADs) have been proposed to be the basic unit of chromosome folding and have been shown to play key roles in genome organization and gene regulation. Several different tools are available for TAD prediction, but their properties have never been thoroughly assessed. In this manuscript, we compare the output of seven different TAD prediction tools on two published Hi-C data sets. TAD predictions varied greatly between tools in number, size distribution and other biological properties. Assessed against a manual annotation of TADs, individual TAD boundary predictions were found to be quite reliable, but their assembly into complete TAD structures was much less so. In addition, many tools were sensitive to sequencing depth and resolution of the interaction frequency matrix. This manuscript provides users and designers of TAD prediction tools with information that will help guide the choice of tools and the interpretation of their predictions.

Cite

CITATION STYLE

APA

Dali, R., & Blanchette, M. (2017). A critical assessment of topologically associating domain prediction tools. Nucleic Acids Research, 45(6), 2994–3005. https://doi.org/10.1093/nar/gkx145

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free