Robot motion control via an eeg-based brain–computer interface by using neural networks and alpha brainwaves

46Citations
Citations of this article
95Readers
Mendeley users who have this article in their library.

Abstract

Modern achievements accomplished in both cognitive neuroscience and human–machine interaction technologies have enhanced the ability to control devices with the human brain by using Brain–Computer Interface systems. Particularly, the development of brain-controlled mobile robots is very important because systems of this kind can assist people, suffering from devastating neuromuscular disorders, move and thus improve their quality of life. The research work presented in this paper, concerns the development of a system which performs motion control in a mobile robot in accordance to the eyes’ blinking of a human operator via a synchronous and endogenous Electroencephalography-based Brain–Computer Interface, which uses alpha brain waveforms. The received signals are filtered in order to extract suitable features. These features are fed as inputs to a neural network, which is properly trained in order to properly guide the robotic vehicle. Experimental tests executed on 12 healthy subjects of various gender and age, proved that the system developed is able to perform movements of the robotic vehicle, under control, in forward, left, backward, and right direction according to the alpha brainwaves of its operator, with an overall accuracy equal to 92.1%.

Cite

CITATION STYLE

APA

Korovesis, N., Kandris, D., Koulouras, G., & Alexandridis, A. (2019). Robot motion control via an eeg-based brain–computer interface by using neural networks and alpha brainwaves. Electronics (Switzerland), 8(12). https://doi.org/10.3390/electronics8121387

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free