We have examined the spatial and temporal nature of Ca2+ signals activated via the phosphoinositide pathway in oligodendrocytes and the cellular specializations underlying oligodendrocyte Ca2+ response characteristics. Cultured cortical oligodendrocytes were incubated with fluo 3 or fura 2, and digital video fluorescence microscopy was used to study the effect of methacholine on [Ca2+];. Single peaks, oscillations, and steady-state plateau [Ca2+]i elevations were evoked by increasing agonist concentration. The peaks and oscillations were found to be Ca2+ wave fronts, which propagate via distinct amplification regions in the cell where the kinetics of Ca2+ release (amplitude and rate of rise of response) are elevated. Staining with 5,5′,6,6′-tetrachloro-1,1′,3,3′- tetraethylbenzimidazolecarbocyanine iodide (JC-1) and 3,3′-dihexyloxacarbocyanine iodide revealed that mitochondria are found in groups of three or more in oligodendrocyte processes and that the groups are distributed with considerable distance separating them. Cross-correlation analysis showed a high degree of correlation between sites where mitochondria are present and peaks in the amplitude and rate of rise of the Ca2+ response. Intramitochondrial Ca2+ concentration, measured using rhod 2, increased upon treatment with methacholine. Methacholine also evoked a rapid change in mitochondrial membrane potential as measured by the J-aggregate fluorescence of JC-1. Pretreatment with the mitochondrial inhibitors carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone (1 μM, 2 min) or antimycin (2 μg/ml, 2 min) altered the methacholine-evoked Ca2+ response in most cells studied, responses being either markedly potentiated or inhibited. The results of this study demonstrate that stimulation of phosphoinositide-coupled muscarinic acetylcholinoceptors activates propagating Ca2+ wave fronts in oligodendrocytes and that the characteristics of these waves are dependent on mitochondrial location and function.
CITATION STYLE
Simpson, P. B., & Russell, J. T. (1996). Mitochondria support inositol 1,4,5-trisphosphate-mediated Ca2+ waves in cultured oligodendrocytes. Journal of Biological Chemistry, 271(52), 33493–33501. https://doi.org/10.1074/jbc.271.52.33493
Mendeley helps you to discover research relevant for your work.