Durable pluripotency and haploidy in epiblast stem cells derived from haploid embryonic stem cells in vitro

18Citations
Citations of this article
24Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Haploid pluripotent stem cells, such as haploid embryonic stem cells (haESCs), facilitate the genetic study of recessive traits. In vitro, fish haESCs maintain haploidy in both undifferentiated and differentiated states, but whether mammalian haESCs can preserve pluripotency in the haploid state has not been tested. Here, we report that mouse haESCs can differentiate in vitro into haploid epiblast stem cells (haEpiSCs), which maintain an intact haploid genome, unlimited self-renewal potential, and durable pluripotency to differentiate into various tissues in vitro and in vivo. Mechanistically, the maintenance of self-renewal potential depends on the Activin/bFGF pathway. We further show that haEpiSCs can differentiate in vitro into haploid progenitor-like cells. When injected into the cytoplasm of an oocyte, androgenetic haEpiSC (ahaEpiSCs) can support embryonic development until midgestation (E12.5). Together, these results demonstrate durable pluripotency in mouse haESCs and haEpiSCs, as well as the valuable potential of using these haploid pluripotent stem cells in high-throughput genetic screening.

Cite

CITATION STYLE

APA

Shuai, L., Wang, Y., Dong, M., Wang, X., Sang, L., Wang, M., … Zhou, Q. (2015). Durable pluripotency and haploidy in epiblast stem cells derived from haploid embryonic stem cells in vitro. Journal of Molecular Cell Biology, 7(4), 326–337. https://doi.org/10.1093/jmcb/mjv044

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free