Observation of aligned dipoles and angular chromism of exciplexes in organic molecular heterostructures

7Citations
Citations of this article
14Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The dipole characteristics of Frenkel excitons and charge-transfer excitons between donor and acceptor molecules in organic heterostructures such as exciplexes are important in organic photonics and optoelectronics. For the bilayer of the organic donor 4,4′,4′′-tris[(3-methylphenyl)phenylamino]triphenylamine and acceptor 2,4,6-tris(biphenyl-3-yl)-1,3,5-triazine molecules, the exciplexes form aligned dipoles perpendicular to the Frenkel excitons, as observed in back focal plane photoluminescence images. The angular chromism of exciplexes observed in the 100 meV range indicates possible delocalization and angle-sensing photonic applications. The blue shift of the peak position and increase in the linewidth of photoluminescene spectra with increasing excitation power are caused by the repulsive aligned exciplex dipole moments with a long lifetime (4.65 μs). Electroluminescence spectra of the exciplex from organic light-emitting diodes using the bilayer are blue-shifted with increasing bias, suggesting unidirectional alignment of the exciplex dipole moments. The observation of exciplex dipole moment alignments across molecular interfaces can facilitate the controlled coupling of exciton species and increase efficiency of organic light-emitting diodes.

Cite

CITATION STYLE

APA

Lee, S. hun, Kim, T. J., Lee, E., Kwon, D., Kim, J., & Joo, J. (2023). Observation of aligned dipoles and angular chromism of exciplexes in organic molecular heterostructures. Nature Communications, 14(1). https://doi.org/10.1038/s41467-023-42976-y

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free