Synthesis of Poly(lactic acid)-block-poly(N,N-dimethylaminoethyl methacrylate) Copolymers with Controllable Block Structures via Reversible Addition Fragmentation Polymerization from Aminolyzed Poly(lactic acid)

5Citations
Citations of this article
27Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Poly(lactic acid)-block-poly(N,N-dimethylaminoethyl methacrylate) (PLA-PDMAEMA) copolymers were synthesized from aminolyzed PLA via reversible addition fragmentation (RAFT) polymerization. PLA undergoes aminolytic degradation with ethylenediamine (EDA). The kinetics of the aminolysis reaction of PLA at different temperatures and EDA concentrations was investigated in detail. The molar masses of products rapidly decreased in the initial stage at low aminolytic degree. Meanwhile, reactive -NH2 and -OH groups were introduced to the end of shorter PLA chains and used as sites to further immobilize the RAFT agent. PLA-PDMAEMA block copolymers were synthesized. A pseudo-first-order reaction kinetics was observed for the RAFT polymerization of PDMAEMA at a low conversion. By controlling the aminolysis reaction of PLA and RAFT polymerization degree of DMAEMA, the length distributions of the PLA and PDMAEMA blocks can be controlled. This method can be extended to more systems to obtain block copolymers with controllable block structure.

Cite

CITATION STYLE

APA

Yu, W., Zhu, L., Shi, J., & Zhao, C. (2018). Synthesis of Poly(lactic acid)-block-poly(N,N-dimethylaminoethyl methacrylate) Copolymers with Controllable Block Structures via Reversible Addition Fragmentation Polymerization from Aminolyzed Poly(lactic acid). International Journal of Polymer Science, 2018. https://doi.org/10.1155/2018/7361659

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free