The present study encompasses green synthesis of silver nanoparticles (AgNPs) using aqueous leaf extract of Arabian Primrose within 6 min of reaction at 60 °C, pH 7 and their characterisation using physico-chemical analytical techniques. UV-Visible spectroscopy elucidated the surface plasmon resonance around 420 nm. FESEM and TEM images revealed that AgNPs were spherical with average diameter 10–60 nm. XRD pattern confirmed their crystalline nature. The leaf extract rich in phenolics and flavonoids was subjected to GC-MS analysis that identified bioactive compounds helping in reduction and stabilisation of AgNPs. The synthesised AgNPs possessed high anti-oxidant potential against DPPH and H2O2 radicals. Incidentally, the AgNPs acted as excellent nanocatalyst towards borohydride reduction and degradation of structurally different organic dyes. The AgNPs also exhibited selective colorimetric sensing of hazardous mercuric, ferric ions and ammonia. Such AgNPs were cytotoxic against HeLa cells (IC50 7.18 µg/mL) and compatible towards normal L20B cells. These AgNPs showed effective anti-microbial activity against different human pathogens tested (bacterial and fungal). This is probably the first report of AgNPs synthesis using Arabian Primrose leaf extract showing strong anti-oxidant, catalytic, biosensing, anti-cancer and anti-microbial activities and find remarkable applications in medical, industrial and ecological sectors.
CITATION STYLE
Nindawat, S., & Agrawal, V. (2020). Arabian Primrose leaf extract mediated synthesis of silver nanoparticles: their industrial and biomedical applications. Artificial Cells, Nanomedicine and Biotechnology, 48(1), 1259–1271. https://doi.org/10.1080/21691401.2020.1817056
Mendeley helps you to discover research relevant for your work.