Variation in hybridogenetic hybrid emergence between populations of water frogs from the Pelophylax esculentus complex

21Citations
Citations of this article
28Readers
Mendeley users who have this article in their library.

Abstract

Many closely related species are capable of mating to produce hybrid offspring, which are usually sterile. Nevertheless, altering the gametogenesis of hybrid offspring can rescue hybrids from sterility by enabling asexual reproduction. Hybridogenesis is one of the most complicated asexual reproductive modes, and it includes drastic genome reorganization only in the germline; this is achieved through elimination of one parental genome and duplication of the remaining one to restore diploid chromosomal set and overcome blocks in meiotic progression. We investigated a model of hybridogenesis, namely, water frogs from the Pelophylax esculentus complex, for the emergence of asexual reproduction. Further, we assessed the impact of its asexual reproduction on the maintenance of interspecies hybrids from two populations on the western edge of the P. esculentus range, in which hybrids coexist with either both parental species or with only one parental species. After analysing tadpole karyotypes, we conclude that in both studied populations, the majority of diploid hybrid males produced haploid gametes with the P. ridibundus genome after elimination of the P. lessonae genome. Hybrid females exhibited problems with genome elimination and duplication; they usually produced oocytes with univalents, but there were observations of individual oocytes with 13 bivalents and even 26 bivalents. In some hybrid tadpoles, especially F1 crosses, we observed failed germ cell development, while in tadpoles from backcrosses, germ cells were normally distributed and contained micronuclei. By identifying chromosomes present in micronuclei, we estimated that the majority of tadpoles from all crosses were able to selectively eliminate the P. lessonae chromosomes. According to our results, hybridogenesis in hybrids can appear both from crosses of parental species and crosses between sexual species with hybrid individuals. The ability to eliminate a genome and perform endoreplication to ensure gamete formation differed between male and female hybrids from the studied populations. Some diploid hybrid females can rarely produce not only haploid gametes but also diploid gametes, which is a crucial step in the formation of triploid hybrids.

Cite

CITATION STYLE

APA

Dedukh, D., Litvinchuk, J., Svinin, A., Litvinchuk, S., Rosanov, J., & Krasikova, A. (2019). Variation in hybridogenetic hybrid emergence between populations of water frogs from the Pelophylax esculentus complex. PLoS ONE, 14(11). https://doi.org/10.1371/journal.pone.0224759

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free