A quantitative and qualitative method using a high-performance liquid chromatography–tandem mass spectrometry (HPLC–MS/MS) detection approach was developed and validated for the analysis of tigecycline, four tetracyclines and their three 4-epimer derivatives in chicken muscle. Samples were extracted repeatedly with 0.1 mol/L Na2EDTA–McIlvaine buffer solution. After vortexing, centrifugation, solid-phase extraction, evaporation and reconstitution, the aliquots were separated using a C8 reversed-phase column (50 mm × 2.1 mm, 5 µm) with a binary solvent system consisting of methanol and 0.01 mol/L trichloroacetic acid aqueous solution. The typical validation parameters were evaluated in accordance with the acceptance criteria detailed in the guidelines of the EU Commission Decision 2002/657/EC and the U.S. Food and Drug Administration Bioanalytical Method Validation 05/24/18. The matrix-matched calibration curve was linear over the concentration range from the limit of quantitation (LOQ) to 400 μg/kg for doxycycline, and the calibration graphs for tetracycline, chlortetracycline, oxytetracycline, their 4-epimer derivatives and tigecycline showed a good linear relationship within the concentration range from the LOQ to 200 μg/kg. The limits of detection (LODs) for the eight targets were in the range of 0.06 to 0.09 μg/kg, and the recoveries from the fortified blank samples were in the range of 89% to 98%. The within-run precision and between-run precision, which were expressed as the relative standard deviations, were less than 5.0% and 6.9%, respectively. The applicability was successfully demonstrated through the determination of residues in 72 commercial chicken samples purchased from different sources. This approach provides a novel option for the detection of residues in animal-derived food safety monitoring.
CITATION STYLE
Guo, Y., He, Z., Gao, P., Liu, S., Zhu, Y., Xie, K., & Dong, Y. (2022). Concurrent Determination of Tigecycline, Tetracyclines and Their 4-Epimer Derivatives in Chicken Muscle Isolated from a Reversed-Phase Chromatography System Using Tandem Mass Spectrometry. Molecules, 27(19). https://doi.org/10.3390/molecules27196139
Mendeley helps you to discover research relevant for your work.