MU Net: Ovarian Follicle Segmentation Using Modified U-Net Architecture

  • et al.
Citations of this article
Mendeley users who have this article in their library.
Get full text


Ovaries play a pivotal role in production by generating eggs through oogenesis in the female reproductive system. This is one crucial aspect of reproduction as eggs are fertilized by the sperm which eventually leads to fertilization and eventually ending in embryo formation. Ovaries are often susceptible to diseases like infertility, polycystic ovarian syndrome (PCOS), ovarian cancer etc. Screening of ovarian follicles via ultrasound images can be of great help in the diagnosis of these abnormal situations. However, screening in most scenarios is still carried out manually by doctors and sonographers leading it to be a monotonous, time consuming and laborious job as well. Thus automatic detection of follicles can reduce the burden of doctors. In our work, we propose MU-net, a novel 2D segmentation network, combination of both MobileNetV2 and U-Net for segmentation of the follicles from ovarian ultrasound images. The test is conducted on the USOVA3D Training Set 1. Although low contrast issues are common setback for ultrasound images, our model has achieved a descent accuracy rate of 98.4%.




Saha, D., Mandal, Dr. A., & Ghosh, R. (2022). MU Net: Ovarian Follicle Segmentation Using Modified U-Net Architecture. International Journal of Engineering and Advanced Technology, 11(4), 30–35.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free