Combined interpretation of radar, hydraulic, and tracer data from a fractured-rock aquifer near Mirror Lake, New Hampshire, USA

60Citations
Citations of this article
61Readers
Mendeley users who have this article in their library.
Get full text

Abstract

An integrated interpretation of field experimental cross-hole radar, tracer, and hydraulic data demonstrates the value of combining time-lapse geophysical monitoring with conventional hydrologic measurements for improved characterization of a fractured-rock aquifer. Time-lapse difference-attenuation radar tomography was conducted during saline tracer experiments at the US Geological Survey Fractured Rock Hydrology Research Site near Mirror Lake, Grafton County, New Hampshire, USA. The presence of electrically conductive saline tracer effectively illuminates permeable fractures or pathways for geophysical imaging. The geophysical results guide the construction of three-dimensional numerical models of ground-water flow and solute transport. In an effort to explore alternative explanations for the tracer and tomographic data, a suite of conceptual models involving heterogeneous hydraulic conductivity fields and rate-limited mass transfer are considered. Calibration data include tracer concentrations, the arrival time of peak concentration at the outlet, and steady-state hydraulic head. Results from the coupled inversion procedure suggest that much of the tracer mass migrated outside the three tomographic image planes, and that solute is likely transported by two pathways through the system. This work provides basic and site-specific insights into the control of permeability heterogeneity on ground-water flow and solute transport in fractured rock. © Springer-Verlag 2004.

Cite

CITATION STYLE

APA

Day-Lewis, F. D., Lane, J. W., & Gorelick, S. M. (2006). Combined interpretation of radar, hydraulic, and tracer data from a fractured-rock aquifer near Mirror Lake, New Hampshire, USA. Hydrogeology Journal, 14(1–2), 1–14. https://doi.org/10.1007/s10040-004-0372-y

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free