The centrosome and bipolar spindle assembly

  • Hinchcliffe E
N/ACitations
Citations of this article
19Readers
Mendeley users who have this article in their library.
Get full text

Abstract

In vertebrate somatic cells, the centrosome functions as the major microtubule- organizing center (MTOC), which splits and separates to form the poles of the mitotic spindle. However, the role of the centriole-containing centrosome in the formation of bipolar mitotic spindles continues to be controversial. Cells normally containing centrosomes are still able to build bipolar spindles after their centrioles have been removed or ablated. In naturally occurring cellular systems that lack centrioles, such as plant cells and many oocytes, bipolar spindles form in the complete absence of canonical centrosomes. These observations have led to the notion that centrosomes play no role during mitosis. However, recent work has re-examined spindle assembly in the absence of centrosomes, both in cells that naturally lack them and those that have had them experimentally removed. The results of these studies suggest that an appreciation of microtubule network organization, both before and after nuclear envelope breakdown (NEB), is the key to understanding the mechanisms that regulate spindle assembly and the generation of bipolarity. © 2011 Landes Bioscience.

Cite

CITATION STYLE

APA

Hinchcliffe, E. H. (2011). The centrosome and bipolar spindle assembly. Cell Cycle, 10(22), 3841–3848. https://doi.org/10.4161/cc.10.22.18293

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free