Effects of polystyrene nanoparticles on the microbiota and functional diversity of enzymes in soil

232Citations
Citations of this article
334Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: The increasing production of nanoplastics and the fragmentation of microplastics into smaller particles suggest a plausible yet unclear hazard in the natural environment, such as soil. We investigated the short-term effects (28 days) of polystyrene nanoparticles (PS-NPs) on the activity and biomass of soil microbiota, and the functional diversity of soil enzymes at environmental relevant low levels in an incubation experiment. Results: Our results showed a significant decrease in microbial biomass in treatments of 100 and 1000 ng PS-NP g−1 DM throughout the incubation period. Dehydrogenase activity and activities of enzymes involved in N-(leucine-aminopeptidase), P-(alkaline-phosphatase), and C-(β-glucosidase and cellobiohydrolase) cycles in the soil were significantly reduced at day 28 suggesting a broad and detrimental impact of PS-NPs on soil microbiota and enzymes. Leucine-aminopeptidase and alkaline-phosphatase activities tended to decrease consistently, while β-glucosidase and cellobiohydrolase activities increased at high concentrations (e.g., PS-NP-1000) in the beginning of the incubation period, e.g., at day 1. On the other hand, basal respiration and metabolic quotient increased with increasing PS-NP application rate throughout the incubation period possibly due to increased cell death that caused substrate-induced respiration (cryptic growth). Conclusions: We herewith demonstrated for the first time the potential antimicrobial activity of PS-NPs in soil, and this may serve as an important resource in environmental risk assessment of PS-NPs in the soil environment.

Cite

CITATION STYLE

APA

Awet, T. T., Kohl, Y., Meier, F., Straskraba, S., Grün, A. L., Ruf, T., … Emmerling, C. (2018). Effects of polystyrene nanoparticles on the microbiota and functional diversity of enzymes in soil. Environmental Sciences Europe, 30(1). https://doi.org/10.1186/s12302-018-0140-6

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free