Can leaf water content be estimated using multispectral terrestrial laser scanning? A case study with Norway spruce seedlings

26Citations
Citations of this article
53Readers
Mendeley users who have this article in their library.

Abstract

Changing climate is increasing the amount and intensity of forest stress agents, such as drought, pest insects, and pathogens. Leaf water content, measured here in terms of equivalent water thickness (EWT), is an early indicator of tree stress that provides timely information about the health status of forests. Multispectral terrestrial laser scanning (MS-TLS) measures target geometry and reflectance simultaneously, providing spatially explicit reflectance information at several wavelengths. EWT and leaf internal structure affect leaf reflectance in the shortwave infrared region that can be used to predict EWT with MS-TLS. A second wavelength that is sensitive to leaf internal structure but not affected by EWT can be used to normalize leaf internal effects on the shortwave infrared region and improve the prediction of EWT. Here we investigated the relationship between EWT and laser intensity features using multisensor MS-TLS at 690, 905, and 1,550nm wavelengths with both drought-treated and Endoconidiophora polonica inoculated Norway spruce seedlings to better understand how MS-TLS measurements can explain variation in EWT. In our study, a normalized ratio of two wavelengths at 905 and 1,550nm and length of seedling explained 91% of the variation (R2) in EWT as the respective prediction accuracy for EWT was 0.003 g/cm2 in greenhouse conditions. The relation between EWT and the normalized ratio of 905 and 1,550nm wavelengths did not seem sensitive to a decreased point density of the MS-TLS data. Based on our results, different EWTs in Norway spruce seedlings show different spectral responses when measured using MS-TLS. These results can be further used when developing EWT monitoring for improving forest health assessments.

Cite

CITATION STYLE

APA

Junttila, S., Sugano, J., Vastaranta, M., Linnakoski, R., Kaartinen, H., Kukko, A., … Hyyppä, J. (2018). Can leaf water content be estimated using multispectral terrestrial laser scanning? A case study with Norway spruce seedlings. Frontiers in Plant Science, 9. https://doi.org/10.3389/fpls.2018.00299

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free