Transcriptional activation of transforming growth factor-β1 in mesangial cell culture by high glucose concentration

145Citations
Citations of this article
27Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background. Transforming growth factor-β (TGF-β) is an important hypertrophic and prosclerotic cytokine in the pathogenesis of diabetic nephropathy. The mechanisms of regulation of the TGF-β system by high ambient glucose in kidney cells are incompletely defined. This study examined the mechanisms of regulation of TGF-β1 expression by high glucose in murine mesangial cells (MMCs) in culture. Methods. MMCs were cultured in either normal (100 mg/dl) or high (450 mg/dl) D-glucose concentration. Total TGF- β1 protein secretion and bioactivity, mRNA expression and stability, and gene transcription rate were measured; promoter-reporter chloramphenicol acetyltransferase (CAT) assays and electrophoretic mobility shift assay (EMSA) were performed to investigate the presence of putative glucose- response elements. Results. Raising the ambient D-glucose concentration for 72 hours increased TGF-β1 bioactivity in cell culture medium by 47% and total TGF-β1 secretion by approximately 90%. Northern analysis demonstrated that the steady-state TGF-β1 mRNA level was increased nearly twofold after 48 hours of growth in high glucose. This increase was not due to increased stability, as the half-life of the message was approximately five hours in both normal and high glucose conditions. Transcriptional activity of the TGF- β1 gene (nuclear run-on assay) was increased by 73% in cells grown in high glucose for 24 hours. Transiently transfected MMCs with CAT constructs containing varying lengths of the murine TGF-β1 promoter demonstrated that high glucose selectively increased the expression of only one of the constructs, pA835. Sequence inspection revealed the presence of a putative glucose responsive element, CACGTG, within this construct. High glucose in MMC culture for 24 hours increased nuclear protein binding to a probe containing this element when analyzed using EMSA. Conclusions. High glucose stimulates total TGF-β1 protein production and bioactivity as well as the steady-state level of TGF-β1 mRNA. The latter effect is due primarily to stimulation of gene transcription rate rather than message stability. Transcriptional activation by high glucose may involve a region in the TGF- β1 promoter containing a putative glucose-response element.

Cite

CITATION STYLE

APA

Hoffman, B. B., Sharma, K., Zhu, Y., & Ziyadeh, F. N. (1998). Transcriptional activation of transforming growth factor-β1 in mesangial cell culture by high glucose concentration. Kidney International, 54(4), 1107–1116. https://doi.org/10.1046/j.1523-1755.1998.00119.x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free