Plasmodium falciparum multidomain protein VAR2CSA stands today as the leading vaccine candidate against pregnancy-associated malaria (PAM). Most of the studies aiming to decrypt how naturally acquired immunity develops have assessed the immune recognition of individual VAR2CSA Duffy-binding-like (DBL) domains, thus overlooking the presence of conformational epitopes resulting from the overall folding of the full-length protein. In order to characterize the development of humoral immunity toward VAR2CSA, we made use of a large cohort of 293 Senegalese pregnant women to assess the level of recognition by plasma IgG of the full-length VAR2CSA protein of the 3D7 parasite strain (3D7-VAR2CSA), the CSA-binding multidomains 3D7-DBL1X to -DBL3X (3D7-DBL1X-3X), and the CSA nonbinding multidomains 3D7-DBL4ε to -DBL6ε (3D7-DBL4ε-6ε), as well as individual 3D7-DBL domains. Our results revealed a parity-dependent recognition of the full-length 3D7-VAR2CSA and of the CSA-binding region, 3D7-DBL1X-3X. Indeed, multigravid women possess significantly higher levels of antibodies directed against these constructs than primigravidae. Our results suggest an important role of antibodies targeting the CSA-binding region in the development of immunity against PAM, therefore providing new insights on how natural protection might be acquired and further information for the design of VAR2CSA-based vaccines.
CITATION STYLE
Dechavanne, S., Srivastava, A., Gangnard, S., Nunes-Silva, S., Dechavanne, C., Fievet, N., … Gamain, B. (2015). Parity-dependent recognition of DBL1X-3X suggests an important role of the VAR2CSA high-affinity CSA-binding region in the development of the humoral response against placental malaria. Infection and Immunity, 83(6), 2466–2474. https://doi.org/10.1128/IAI.03116-14
Mendeley helps you to discover research relevant for your work.