Introduction. The fungus Aspergillus oryzae is widely used in the production of fermented soy-based products. However, there is little data on how its genetic characteristics affect the biochemical and fractional composition of protein substances during fermentation and the quality of fermented products. This study aimed to investigate the conversion of soy meal under the influence of two A. oryzae strains with different morphological and cultural properties during the production of a fermented soy sauce. Study objects and methods. The study used two A. oryzae strains, RCAM 01133 and RCAM 01134, which were isolated from the industrial F-931 strain (Russian Collection of Industrial Microorganisms), a producer of hydrolytic enzymes. Micromycetes were cultivated by a solid-phase method on soy meal, followed by dry fermentation. The results were analyzed with regard to accumulation of amine nitrogen, bound and free amino acids, proteins and carbohydrates. Results and discussion. The cultivation of micromycetes resulted in a 35–38% increase in protein, a tenfold increase in free amino acids, and a 1.5–1.7 fold decrease in polysaccharides. The contents of essential amino acids in the fermented soy sauce were 1.7 and 1.2 times as high as in the initial medium (soy meal) and in the reference protein, respectively. Fermentation enhanced the biological value of proteins, increasing the amino acid scores of phenylalanine (7.3–7.7 times), phenylalanine (2 times), as well as valine, threonine, tryptophan, and lysine. The contents of protein and essential amino acids were slightly higher in the sauce with the RCAM 01133 strain. Conclusion. Fermenting soy materials with the RCAM 01133 strain of A. oryzae is an alternative way to produce food ingredients with good sensory properties containing carbohydrates and biologically complete protein in easily digestible forms.
CITATION STYLE
Serba, E. M., Tadzhibova, P. Y., Rimareva, L. V., Overchenko, М. B., Ignatova, N. I., & Volkova, G. S. (2021). Bioconversion of soy under the influence of Aspergillus oryzae strains producing hydrolytic enzymes. Foods and Raw Materials, 9(1), 52–58. https://doi.org/10.21603/2308-4057-2021-1-52-58
Mendeley helps you to discover research relevant for your work.