Self-Assembled Folic Acid-Targeted Pectin-Multi-Arm Polyethylene Glycol Nanoparticles for Tumor Intracellular Chemotherapy

16Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Ursolic acid is widely used as an effective anticancer drug for the treatment of various cancers. However, its poor water solubility, short circulation time in vivo, and lack of targeting have made it a burden for clinical applications. We report a self-assembled folate-modified pectin nanoparticle for loading ursolic acid (HCPT@F-Pt-PU NPs) and embed the anticancer drug hydroxycamptothecin to achieve synergistic treatment with ursolic acid. In addition, the galactose residue of the pectin molecule can be recognized by the asialoglycoprotein receptor on the surface of the liver cancer cell, promoting the rapid penetration and release of HCPT@F-Pt-PU NPs intracellularly. In particular, the introduction of multiarm polyethylene glycol can improve the uniformity (106 nm) and concealment of the nanoparticles and avoid the early release of the drug or the toxicity to normal cells. HCPT@F-Pt-PU NPs have a high drug loading (7.27 wt %) and embedding efficiency (19.84 wt %) and continuous circulation up to 80 h, leading to more apoptosis (91.61%). HCPT@F-Pt-PU NP intracellular drug delivery will be a promising strategy.

Cite

CITATION STYLE

APA

Liu, Y., Kong, T., Yang, Z., Zhang, Y., Lei, J., & Zhao, P. (2021). Self-Assembled Folic Acid-Targeted Pectin-Multi-Arm Polyethylene Glycol Nanoparticles for Tumor Intracellular Chemotherapy. ACS Omega, 6(2), 1223–1234. https://doi.org/10.1021/acsomega.0c04350

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free