Indium Nitride at the 2D Limit

61Citations
Citations of this article
51Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The properties of 2D InN are predicted to substantially differ from the bulk crystal. The predicted appealing properties relate to strong in- and out-of-plane excitons, high electron mobility, efficient strain engineering of their electronic and optical properties, and strong application potential in gas sensing. Until now, the realization of 2D InN remained elusive. In this work, the formation of 2D InN and measurements of its bandgap are reported. Bilayer InN is formed between graphene and SiC by an intercalation process in metal–organic chemical vapor deposition (MOCVD). The thickness uniformity of the intercalated structure is investigated by conductive atomic force microscopy (C-AFM) and the structural properties by atomic resolution transmission electron microscopy (TEM). The coverage of the SiC surface is very high, above 90%, and a major part of the intercalated structure is represented by two sub-layers of indium (In) bonded to nitrogen (N). Scanning tunneling spectroscopy (STS) measurements give a bandgap value of 2 ± 0.1 eV for the 2D InN. The stabilization of 2D InN with a pragmatic wide bandgap and high lateral uniformity of intercalation is demonstrated.

Cite

CITATION STYLE

APA

Pécz, B., Nicotra, G., Giannazzo, F., Yakimova, R., Koos, A., & Kakanakova-Georgieva, A. (2021). Indium Nitride at the 2D Limit. Advanced Materials, 33(1). https://doi.org/10.1002/adma.202006660

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free