RIG-I senses viral RNA in the cytosol and initiates host innate immune response by triggering the production of type 1 interferon. A recent RNAi knockdown screen yielded close to hundred host genes whose products affected viral RNA-induced IFN-β production and highlighted the complexity of the antiviral response. The stress granule protein G3BP1, known to arrest mRNA translation, was identified as a regulator of RIG-I- induced IFN-β production. How G3BP1 functions in RIG-I signaling is not known, however. Here, we overexpress G3BP1 with RIG-I in HEK293T cells and found that G3BP1 significantly enhances RIG-I-induced ifn-b mRNA synthesis. More importantly, we demonstrate that G3BP1 binds RIG-I and that this interaction involves the C-terminal RGG domain of G3BP1. Confocal microscopy studies also show G3BP1 co-localization with RIG-I and with infecting vesicular stomatitis virus in Cos-7 cells. Interestingly, immunoprecipitation studies using biotinlabeled viral dsRNA or poly(I C) and cell lysate- derived or in vitro translated G3BP1 indicated that G3BP1 could directly bind these substrates and again via its RGG domain. Computational modeling further revealed a juxtaposed interaction between G3BP1 RGG and RIG-I RNA-binding domains. Together, our data reveal G3BP1 as a critical component of RIG-I signaling and possibly acting as a co-sensor to promote RIG-I recognition of pathogenic RNA.
CITATION STYLE
Kim, S. S. Y., Sze, L., & Lam, K. P. (2019). The stress granule protein G3BP1 binds viral dsRNA and RIG-I to enhance interferon-β response. Journal of Biological Chemistry, 294(16), 6430–6438. https://doi.org/10.1074/jbc.RA118.005868
Mendeley helps you to discover research relevant for your work.