In this work we describe the application of a careflow mining algorithm to detect the most frequent patterns of care in a type 2 diabetes patients cohort. The applied method enriches the detected patterns with clinical data to define temporal phenotypes across the studied population. Novel phenotypes are discovered from heterogeneous data of 424 Italian patients, and compared in terms of metabolic control and complications. Results show that careflow mining can help to summarize the complex evolution of the disease into meaningful patterns, which are also significant from a clinical point of view.
CITATION STYLE
Dagliati, A., Tibollo, V., Cogni, G., Chiovato, L., Bellazzi, R., & Sacchi, L. (2018). Careflow Mining Techniques to Explore Type 2 Diabetes Evolution. Journal of Diabetes Science and Technology, 12(2), 251–259. https://doi.org/10.1177/1932296818761751
Mendeley helps you to discover research relevant for your work.