Selective loss of hippocampal granule cells following adrenalectomy: Implications for spatial memory

108Citations
Citations of this article
41Readers
Mendeley users who have this article in their library.

Abstract

We examined the effects of long-term adrenalectomy (ADX) on hippocampal anatomy and behavioral learning in two spatial memory tasks. We assessed damage throughout the hippocampus by stereological analysis of the dentate gyrus and Ammon's horn. Rats were ADX or sham operated, and then tested in the Morris water maze 12 weeks after surgery, followed by testing on an eight-arm, alternating-baited radial maze at 22 weeks postsurgery. Animals were killed 7 1/2 months after surgery. ADX rats had selective volume reduction in the dentate gyrus with no changes in pyramidal regions CA1, CA2, CA3, or CA4. Dentate gyrus damage in some cases occurred throughout the entire rostrocaudal extent of the hippocampus. Analysis of corticosterone serum levels, serum Na+/K+ ratios, and body weight gain suggested that individual differences in dentate gyrus damage appear to be due to incomplete adrenalectomies or remaining ectopic tissue. ADX rats were able to learn in both the Morris water maze and eight-arm radial maze, even when the dentate gyrus was severely damaged (80% volume reduction). However, in the Morris water maze, the ADX rats' learning rate was significantly slower compared to controls. There was no difference between ADX and controls during reversal in either task. These data indicate that damage to the dentate gyrus following long-term ADX is severe enough to cause learning impairment in selected learning tasks. Such damage is restricted to the dentate gyrus and can occur throughout the rostrocaudal regions of the hippocampus.

Cite

CITATION STYLE

APA

Conrad, C. D., & Roy, E. J. (1993). Selective loss of hippocampal granule cells following adrenalectomy: Implications for spatial memory. Journal of Neuroscience, 13(6), 2582–2590. https://doi.org/10.1523/jneurosci.13-06-02582.1993

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free