We show, using a direct variational approach, that the second boundary value problem for the Monge-Amp\`ere equation in R^n with exponential non-linearity and target a convex body P is solvable iff 0 is the barycenter of P. Combined with some toric geometry this confirms, in particular, the (generalized) Yau-Tian-Donaldson conjecture for toric log Fano varieties (X,D), saying that (X,D) admits a (singular) K\"ahler-Einstein metric iff it is K-stable in the algebro-geometric sense. We thus obtain a new proof and extend to the log Fano setting the seminal result of Zhou-Wang concerning the case when X is smooth and D is trivial. Li's toric formula for the greatest lower bound on the Ricci curvature is also generalized. More generally, we obtain K\"ahler-Ricci solitons on any log Fano variety and show that they appear as the large time limit of the K\"ahler-Ricci flow. Furthermore, using duality, we also confirm a conjecture of Donaldson concerning solutions to Abreu's boundary value problem on the convex body P. in the case of a given canonical measure on the boundary of P.
CITATION STYLE
Berman, R. J., & Berndtsson, B. (2014). Real Monge-Ampère equations and Kähler-Ricci solitons on toric log Fano varieties. Annales de La Faculté Des Sciences de Toulouse : Mathématiques, 22(4), 649–711. https://doi.org/10.5802/afst.1386
Mendeley helps you to discover research relevant for your work.