Genetic suppression of collapsin response mediator protein 2 phosphorylation improves outcome in methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson’s model mice

16Citations
Citations of this article
22Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Parkinson's disease (PD) is a common neurodegenerative disorder characterized by slow and progressive degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNc). Levodopa (l-Dopa), the current main treatment for PD, supplies dopamine, but it does not prevent neurodegeneration. There is thus no promising remedy for PD. Recent in vitro study showed the increase in the phosphorylation levels of Collapsin Response Mediator Protein 2 (CRMP2) is involved in dopaminergic axon degeneration. In the present study, we report elevation of CRMP2 phosphorylation in dopaminergic neurons in SNc after challenge with the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), a common model for PD. Genetic suppression of CRMP2 phosphorylation by mutation of the obligatory Cyclin-dependent kinase 5 (Cdk5)-targeted serine-522 site prevented axonal degradation in the nigrostriatal pathway of transgenic mice. As a result, the degree of MPTP-induced motor impairment in the rotarod test was suppressed. These results suggest that suppression of CRMP2 phosphorylation may be a novel therapeutic target for PD.

Cite

CITATION STYLE

APA

Togashi, K., Hasegawa, M., Nagai, J., Tonouchi, A., Masukawa, D., Hensley, K., … Ohshima, T. (2019). Genetic suppression of collapsin response mediator protein 2 phosphorylation improves outcome in methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson’s model mice. Genes to Cells, 24(1), 31–40. https://doi.org/10.1111/gtc.12651

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free