Poly(A) tails of mRNAs are synthesized in the cell nucleus with a defined length, ∼250 nucleotides in mammalian cells. The same type of length control is seen in an in vitro polyadenylation system reconstituted from three proteins: poly(A) polymerase, cleavage and polyadenylation specificity factor (CPSF), and the nuclear poly(A)-binding protein (PABPN1). CPSF, binding the polyadenylation signal AAUAAA, and PABPN1, binding the growing poly(A) tail, cooperatively stimulate poly(A) polymerase such that a complete poly(A) tail is synthesized in one processive event, which terminates at a length of ∼250 nucleotides.Wereport that PABPN1 is required to restrict CPSF binding to the AAUAAA sequence and to permit the stimulation of poly(A) polymerase by AAUAAA-bound CPSF to be maintained throughout the elongation reaction. The stimulation by CPSF is disrupted when the poly(A) tail has reached a length of ∼250 nucleotides, and this terminates processive elongation. PABPN1 measures the length of the tail and is responsible for disrupting the CPSF-poly(A) polymerase interaction. © 2009 by The American Society for Biochemistry and Molecular Biology, Inc.
CITATION STYLE
Kühn, U., Gündel, M., Knoth, A., Kerwitz, Y., Rüdel, S., & Wahle, E. (2009). Poly(A) tail length is controlled by the nuclear Poly(A)-binding protein regulating the interaction between Poly(A) polymerase and the cleavage and polyadenylation specificity factor. Journal of Biological Chemistry, 284(34), 22803–22814. https://doi.org/10.1074/jbc.M109.018226
Mendeley helps you to discover research relevant for your work.