Pleurotus ostreatus opposes mitochondrial dysfunction and oxidative stress in acetaminophen-induced hepato-renal injury

30Citations
Citations of this article
57Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Acetaminophen (APAP)-induced toxicity is a predominant cause of acute hepatic and renal failure. In both humans and rodents toxicity begins with a reactive metabolite that binds to proteins. This leads to mitochondrial dysfunction and nuclear DNA fragmentation resulting in necrotic cell death. Pleurotus ostreatus (an edible oyster mushroom) is well recognized as a flavourful food, as well as a medicinal supplement. In the present study, we evaluated the role of Pleurotus ostreatus in the protection against APAP-induced hepato-renal toxicity. We also explored the mechanism by which Pleurotus ostreatus exerts its effects. Methods: Ninety adult male Swiss albino mice were divided into three groups (30 mice/group). Mice were offered normal diet (control and APAP groups), or diet supplemented with 10% Pleurotus ostreatus (APAP + Pleurotus ostreatus) for 10 days. Mice were either treated with vehicle (control group, single intra-peritoneal injection.), or APAP (APAP and APAP + Pleurotus ostreatus groups, single intra-peritoneal injection, 500 mg/kg), 24 hours after the last meal. Results: APAP increased serum levels of alanine aminotransferase (ALT), aspartate aminotransferase (AST) glutamate dehydrogenase (GDH), creatinine, blood urea nitrogen (BUN), urinary kidney injury molecule-1 (KIM-1), and hepatic and renal malondialdehyde (MDA) content. APAP decreased hepatic and renal glutathione (GSH) content, as well as glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) activities. Supplementation with Pleurotus ostreatus significantly reduced APAP-induced elevated levels of ALT, AST, GDH, creatinine, BUN, KIM-1and MDA, while GSH level, and GSH-Px and SOD activities were significantly increased. Our findings were further validated by histopathology; treatment with Pleurotus ostreatus significantly decreased APAP-induced cell necrosis in liver and kidney tissues. Conclusions: We report here that the antioxidant effect of Pleurotus ostreatus opposes mitochondrial dysfunction and oxidative stress accompanying APAP over-dose, with subsequent clinically beneficial effects on liver and kidney tissues.

Cite

CITATION STYLE

APA

Naguib, Y. M., Azmy, R. M., Samaka, R. M., & Salem, M. F. (2014). Pleurotus ostreatus opposes mitochondrial dysfunction and oxidative stress in acetaminophen-induced hepato-renal injury. BMC Complementary and Alternative Medicine, 14(1). https://doi.org/10.1186/1472-6882-14-494

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free