Current development of light-responsive materials and technologies imposes an urgent demand on visible-light photoswitching on account of its mild excitation with high penetration ability and low photo-toxicity. However, complicated molecular design and laborious synthesis are often required for visible-light photoswitch, especially for diarylethenes. Worse still, a dilemma is encountered as the visible-light excitation of the diarylethene is often achieved at the expense of photochromic performances. To tackle these setbacks, we introduce a building-block design strategy to achieve all-visible-light photochromism with the triplet-sensitization mechanism. The simply designed diarylethene system is constructed by employing a sensitizer building-block with narrow singlet-triplet energy gap (ΔEST) to a diarylethene building-block. A significant improvement on the photochromic efficiency is obtained as well as an enhanced photo-fatigue resistance over those under UV irradiation. The balance between the visible-light excitation and decent photochromism is thus realized, promoting a guiding principle for the visible-light photochromism.
CITATION STYLE
Zhang, Z., Wang, W., Jin, P., Xue, J., Sun, L., Huang, J., … Tian, H. (2019). A building-block design for enhanced visible-light switching of diarylethenes. Nature Communications, 10(1). https://doi.org/10.1038/s41467-019-12302-6
Mendeley helps you to discover research relevant for your work.