Optimization of a higher throughput microsomal stability screening assay for profiling drug discovery candidates

124Citations
Citations of this article
108Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Metabolic stability plays an important role in the success of drug candidates. First-pass metabolism is one of the major causes of poor oral bioavailability and short half-life. Traditionally, metabolic stability was evaluated at a later stage of drug discovery and required laborious manual manipulations. With the advance of high-throughput screening, combinatorial chemistry, and early profiling of drug-like properties, automated and rapid stability assays are needed to meet the increasing demand of throughput, speed, and reproducibility at earlier stages of drug discovery. The authors describe optimization of a simple, robust, high-throughput microsomal stability assay developed in a 96-well format. The assay consists of 2 automated components: robotic sample preparation for incubation and cleanup and rapid liquid chromatography/mass spectrometry/mass spectrometry (LC/MS/MS) analysis to determine percent remaining of the parent compound. The reagent solutions and procedural steps were optimized for automation. Variables affecting assay results were investigated. The variability introduced by microsome preparations from different sources (various vendors and batches) was studied and indicates the need for careful control. Quality control and normalization of the stability results are critical when applying the screening data, generated at different times or research sites, to discovery projects. © 2003 The Society for Biomolecular Screening.

Cite

CITATION STYLE

APA

Di, L., Kerns, E. H., Hong, Y., Kleintop, T. A., McConnell, O. J., & Huryn, D. M. (2003). Optimization of a higher throughput microsomal stability screening assay for profiling drug discovery candidates. Journal of Biomolecular Screening, 8(4), 453–462. https://doi.org/10.1177/1087057103255988

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free