Soil erosion, soil saturation and floods are frequently associated with extreme rainfall events. Thus, the scientific literature agrees on the need to carry out studies that improve the assessment of the probability of occurrence of extreme rainfall values. The main goal of this study was to compare the performance of the multi-parameters distributions Wakeby, Kappa and Generalized Extreme Value in fitting the annual maximums of daily, 2-day and 3-day rainfall amounts obtained from the weather station of Campinas, located in the State of São Paulo, Brazil (1890-2012). As a secondary aim, the presence of climate trends and serial correlation in these series was also evaluated. The auto-correlation function and the Mann-Kendall tests have shown the presence of no serial correlation and climate trends in the above mentioned series. The results obtained from goodness-of-fit procedures allowed us to conclude that the Kappa and the Generalized Extreme Value distributions present the best performance in describing the probabilistic structure of the series under analysis.
CITATION STYLE
Blain, G. C., & Meschiatti, M. C. (2014). Using multi-parameters distributions to assess the probability of occurrence of extreme rainfall data. Revista Brasileira de Engenharia Agricola e Ambiental, 18(3), 307–313. https://doi.org/10.1590/S1415-43662014000300010
Mendeley helps you to discover research relevant for your work.