Batch chromatography has several disadvantages, such as insufficient utilization of the capacity of the resin, high buffer consumption and discontinuity. Considering the high costs for downstream processing, a continuously working chromatographic system with three membrane adsorber units was designed, tested and put into operation. The basic principle of the setup is periodic counter-current chromatography (PCCC). The PCCC system was used for capturing and purifying Candida antarctica lipase B (CalB) directly from cell lysate in one single unit operation. The best purification result was achieved by means of anion-exchange chromatography. The dynamic binding capacity with Sartobind® Q 75 amounted to 4.2 mg (56 g/cm2). After transferring the method to the 3MA-PCCC, 0.22 g CalB (73 U/mg) were obtained from 0.9 L E. coli lysate within 6 h and a recovery of 80%. Compared to the batch process, the productivity could be increased by 36% and the buffer consumption could be reduced by about 20%. Although the purification of CalB from lysate by means of anion-exchange chromatography was not selective and quantitative using the 3MA-PCCC device, it could be shown that the concept of the system was successfully implemented and led to a significant improvement of CalB purification.
CITATION STYLE
Brämer, C., Schreiber, S., Scheper, T., & Beutel, S. (2018). Continuous purification of Candida antarctica lipase B using 3-membrane adsorber periodic counter-current chromatography. Engineering in Life Sciences, 18(7), 414–424. https://doi.org/10.1002/elsc.201700159
Mendeley helps you to discover research relevant for your work.