Tunnel surface settlement forecasting with ensemble learning

36Citations
Citations of this article
40Readers
Mendeley users who have this article in their library.

Abstract

Ground surface settlement forecasting in the process of tunnel construction is one of the most important techniques towards sustainable city development and preventing serious damages, such as landscape collapse. It is evident that modern artificial intelligence (AI) models, such as artificial neural network, extreme learning machine, and support vector regression, are capable of providing reliable forecasting results for tunnel surface settlement. However, two limitations exist for the current forecasting techniques. First, the data provided by the construction company are usually univariate (i.e., containing only the settlement data). Second, the demand of tunnel surface settlement is immediate after the construction process begins. The number of training data samples is limited. Targeting at the above two limitations, in this study, a novel ensemble machine learning model is proposed to forecast tunnel surface settlement using univariate short period of real-world tunnel settlement data. The proposed Adaboost. RT framework fully utilizes existing data points with three base machine learning models and iteratively updates hyperparameters using current surface point locations. Experimental results show that compared with existing machine learning techniques and algorithms, the proposed ensemble learning method provides a higher prediction accuracy with acceptable computational efficiency.

Cite

CITATION STYLE

APA

Yan, K., Dai, Y., Xu, M., & Mo, Y. (2020). Tunnel surface settlement forecasting with ensemble learning. Sustainability (Switzerland), 12(1). https://doi.org/10.3390/SU12010232

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free