Objective: To determine the contribution of acute infarcts, evidenced by diffusion-weighted imaging positive (DWI+) lesions, to progression of white matter hyperintensities (WMH) and other cerebral small vessel disease (SVD) markers. Methods: We performed monthly 3T magnetic resonance imaging (MRI) for 10 consecutive months in 54 elderly individuals with SVD. MRI included high-resolution multishell DWI, and 3-dimensional fluid-attenuated inversion recovery, T1, and susceptibility-weighted imaging. We determined DWI+ lesion evolution, WMH progression rate (ml/mo), and number of incident lacunes and microbleeds, and calculated for each marker the proportion of progression explained by DWI+ lesions. Results: We identified 39 DWI+ lesions on 21 of 472 DWI scans in 9 of 54 subjects. Of the 36 DWI+ lesions with follow-up MRI, 2 evolved into WMH, 4 evolved into a lacune (3 with cavity '3mm), 3 evolved into a microbleed, and 27 were not detectable on follow-up. WMH volume increased at a median rate of 0.027 ml/mo (interquartile range = 0.005–0.073), but was not significantly higher in subjects with DWI+ lesions compared to those without (p = 0.195). Of the 2 DWI+ lesions evolving into WMH on follow-up, one explained 23% of the total WMH volume increase in one subject, whereas the WMH regressed in the other subject. DWI+ lesions preceded 4 of 5 incident lacunes and 3 of 10 incident microbleeds. Interpretation: DWI+ lesions explain only a small proportion of the total WMH progression. Hence, WMH progression seems to be mostly driven by factors other than acute infarcts. DWI+ lesions explain the majority of incident lacunes and small cavities, and almost one-third of incident microbleeds, confirming that WMH, lacunes, and microbleeds, although heterogeneous on MRI, can have a common initial appearance on MRI. ANN NEUROL 2019;86:582–592.
CITATION STYLE
ter Telgte, A., Wiegertjes, K., Gesierich, B., Marques, J. P., Huebner, M., de Klerk, J. J., … de Leeuw, F. E. (2019). Contribution of acute infarcts to cerebral small vessel disease progression. Annals of Neurology, 86(4), 582–592. https://doi.org/10.1002/ana.25556
Mendeley helps you to discover research relevant for your work.