Parent material and pedogenic thresholds: observations and a simple model

18Citations
Citations of this article
54Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Pedogenic thresholds, where multiple soil properties vary substantially and coherently in a narrow portion of a broad environmental gradient, are well-described on basaltic soils in Hawaii. One such threshold occurs along climate gradients where primary minerals virtually disappear, base saturation decreases sharply, and aluminum is mobilized within a narrow range of increasing rainfall. A recent study that evaluated thresholds along a climate gradient of non-basalt-derived soils on the South Island of New Zealand found that while base saturation declined steeply in a narrow range of rainfall on that gradient, the change was not coherent across soil properties; a substantial fraction of the Ca present in primary minerals (40–60 %) remained through the highest-rainfall sites ((Dixon et al. in J Geophys Res, doi: 10.1002/2016JF003864, 2016). We developed a simple model to explore potential mechanisms driving differences between basalt-derived and non-basalt soils. Incorporating a broader spectrum of mineral weathering rates (including some primary minerals that are highly recalcitrant to weathering) into simulated non-basalt than simulated basalt-derived soils (and accounting for the lower rates of evapotranspiration in New Zealand) was sufficient to simulate observed differences between these substrates. Further, we used the simple model to evaluate the consequences of rainfall variation in the short- (time step to time step) and long-term (a change in rainfall after 50,000 time steps). Results of these analyses demonstrated that year-to-year variation in rainfall could play an important role in controlling changes in the position of the pedogenic threshold during soil development.

Cite

CITATION STYLE

APA

Vitousek, P., Dixon, J. L., & Chadwick, O. A. (2016). Parent material and pedogenic thresholds: observations and a simple model. Biogeochemistry, 130(1–2), 147–157. https://doi.org/10.1007/s10533-016-0249-x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free